Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Vet Res Commun ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263503

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are recognized as being responsible for many cases of foodborne diseases worldwide. Cattle are the main reservoir of STEC, shedding the microorganisms in their feces. The serogroup STEC O91 has been associated with hemorrhagic colitis and hemolytic uremic syndrome. Locus of Adhesion and Autoaggregation (LAA) and its hes gene are related to the pathogenicity of STEC and the ability to form biofilms. Considering the frequent isolation of STEC O91, the biofilm-forming ability, and the possible role of hes in the pathogenicity of STEC, we propose to evaluate the ability of STEC to form biofilms and to evaluate the expression of hes before and after of biofilm formation. All strains were classified as strong biofilm-forming. The hes expression showed variability between strains before and after biofilm formation, and this may be due to other genes carried by each strain. This study is the first to report the relationship between biofilm formation, and hes expression and proposes that the analysis and diagnosis of LAA, especially hes as STEC O91 virulence factors, could elucidate these unknown mechanisms. Considering that there is no specific treatment for HUS, only supportive care, it is necessary to know the survival and virulence mechanisms of STEC O91.

2.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37660235

RESUMO

AIMS: The aim of the present work was to characterize the Lactiplantibacillus sp. LP5 strain, isolated from pork production, and identify bacteriocin-like inhibitory substances produced by this strain. METHODS AND RESULTS: In this study, LP5 was identified by species-specific PCR and 16S rRNA sequencing. Additionally, bacterial growth kinetics, antimicrobial activity, the detection of genes related to plantaricin production, and the genetic expression of plantaricins were determined. Lactiplantibacillus sp. LP5 was identified as Lactiplantibacillus plantarum. The well-diffusion test using cell-free supernatants (CFS), neutralized CFS, CFS treated with catalase, and CFS treated with proteinase K showed that inhibitory effects on a Shiga toxin-producing Escherichia coli (STEC) strain were produced by bacteriocins. The PCR technique allowed the detection of genes encoding E/F plantaricins, as well as J/K and whole genome sequencing, and bacteriocin mining analysis allowed us to confirm the presence of these plantaricins. CONCLUSIONS: We can conclude that the inhibitory effect of L. plantarum LP5 isolated from pigs against the STEC EDL933 strain could be associated with the bacteriocins production and represents a potential use as a probiotic strain.


Assuntos
Anti-Infecciosos , Bacteriocinas , Animais , Suínos , RNA Ribossômico 16S/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Endopeptidase K , Expressão Gênica
3.
BMC Res Notes ; 16(1): 163, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550739

RESUMO

OBJECTIVES: Shiga toxin-producing Escherichia coli strains LAA-positive are important cause of human infection. The capability to adhere to epithelial cells is a key virulence trait, and genes codified in LAA pathogenicity island could be involved in the adhesion during the pathogenesis of LAA-positive STEC strains. Thus, our objectives were to compare hes-negative and hes-positive STEC strains in their adherence capability to epithelial cells (HEp-2) and to evaluate the expression levels of the hes, iha, and tpsA in the bacteria adhered and non-adhered to HEp-2 cells. These genes are encoded in LAA, and are virulence factors that participate in adhesion and autoaggregation. RESULTS: We could not observe differences between the adhesion of strains but also in the expression level of of hes, iha, and tpsA. Genes encoded in LAA contribute to the adhesion phenotype though the expression of STEC adhesins is a coordinated event that depends not only the strain but also on the environment as well as its genetic background. Therefore, the results of this study suggest that LAA ,the most prevalent PAI among LEE-negative STEC strains, plays a role in pathogenesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Adesinas Bacterianas/genética , Células Epiteliais/microbiologia , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Linhagem Celular
4.
World J Microbiol Biotechnol ; 39(7): 174, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115263

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe diseases. The ability of STEC to produce disease is associated with Shiga toxin (Stx) production. We investigated the occurrence of STEC on bovine and pork carcasses and walls of trucks where they were transported, and we characterized virulence genes and serotypes of STEC strains. We compared the whole genomic sequencing of a STEC O157:H7 strain isolated from a bovine carcass in this work and a STEC O157:H7 strain isolated from a child with HUS, both isolated in 2019. We studied the relationship between these isolates and others collected in the database. The results show a 40% of STEC and two different serogroups were identified (O130 and O157). STEC O157:H7 were isolated from bovine carcasses and harbored stx2, eae, ehxA, katP, espP, stcE, ECSP_0242/1773/2687/2870/2872/3286/3620 and were classified as lineage I/II. In STEC non-O157 isolates, three isolates were isolated from bovine carcasses and harbored the serogroup O130 and one strain isolated from pork carcasses was O-non-typeable. All STEC non-O157 harbored sxt1 gene. The analysis from the whole genome showed that both STEC O157:H7 strains belonged to the hypervirulent clade 8, ST11, phylogroup E, carried the allele tir 255 T > A T, and they were not clonal. The analysis of information allows us to conclude that the STEC strains circulate in pork and bovine carcasses arriving in transport. This situation represents a risk for the consumers and the need to implement an integrated STEC control in the food chain.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Carne de Porco , Carne Vermelha , Escherichia coli Shiga Toxigênica , Criança , Animais , Bovinos , Humanos , Suínos , Escherichia coli Shiga Toxigênica/genética , Proteínas de Escherichia coli/genética , Escherichia coli O157/genética , Infecções por Escherichia coli/veterinária
5.
Rev. argent. microbiol ; 54(3): 31-40, set. 2022. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1407193

RESUMO

Resumen Este estudio evaluó las condiciones higiénico-sanitarias de carnicerías de la ciudadde Tandil (provincia de Buenos Aires) mediante una estimación del riesgo basada en encuestasdirigidas a revisar las buenas prácticas de manufactura y de higiene de los establecimientos. Seutilizó una escala de 1 a 100 para clasificar a los establecimientos en las categorías de riesgoalto (0-40), riesgo moderado (41-70) y riesgo bajo (71-100). A su vez, se evaluó la presencia deSalmonella spp., Staphylococcus aureus, Escherichia coli productor de toxina Shiga (STEC) encarne bovina picada y en muestras ambientales como mesada, cuchilla, picadora y manos delcarnicero. Las muestras se tomaron una sola vez e inmediatamente se refrigeraron y transpor-taron al laboratorio para su análisis. En el período de estudio todas las carnicerías (100) fueronclasificadas como de «riesgo bajo¼ y con buenas condiciones higiénico-sanitarias. No obstante,el 75% de las muestras de carne picada no cumplió con al menos uno de los criterios microbiológicos establecidos en el Artículo 255 del Código Alimentario Argentino. Se sugiere estableceruna estrategia tendiente a identificar los desvíos e implementar un plan de mejoras continuasen las carnicerías de la ciudad de Tandil.


Abstract The aim of this work was to evaluate the hygienic-sanitary conditions of butcher shops in Tandil, Buenos Aires Province, by estimating the risk based on good manufacturing and hygiene practices, through surveys of the establishments. The analysis was performed using a scale of 1-100, and classifying them as high risk (0-40), moderate risk (41-70) or low risk (71-100). The presence of Salmonella spp., Staphylococcus aureus and Shiga toxin-producing Escherichia coli (STEC) from both, ground beef and environmental samples such as countertop, cleaver, mincer and butcher's hands, taken at butcher shops was also evaluated. Sampling was performed only once and immediately refrigerated and transported to the laboratory for analysis. All butcher shops evaluated (100) were classified as "low risk'' with good hygienic-sanitary conditions. However, 75% of the ground beef samples analyzed did not meet at least one of the microbiological criteria established in the Código Alimentario Argentino [Argentine Food Code], article 255. We propose to establish a strategy to identify deviations and implement a plan for continuous improvement in butcher shops of Tandil city.

6.
Front Endocrinol (Lausanne) ; 13: 945736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957815

RESUMO

The presence of Escherichia coli in the vaginal microbiome has been associated with pregnancy complications. In previous works, we demonstrated that Shiga toxin-producing Escherichia coli (STEC) can produce abortion and premature delivery in rats and that Shiga toxin type 2 (Stx2) can impair human trophoblast cell lines. The hypothesis of this work was that STEC may colonize the lower female reproductive tract and be responsible for adverse pregnancy outcomes. Thus, the aim of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix of asymptomatic pregnant women. For that purpose, endocervical swabs were collected from pregnant women during their prenatal examination. Swab samples were enriched in a differential medium to select Enterobacteria. Then, positive samples were analyzed by PCR to detect genes characteristic of Escherichia sp. (such as uidA and yaiO), genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157), and STEC virulence factor genes (such as stx1, stx2, eae, lpfAO113, hcpA, iha, sab, subAB). The cytotoxic effects of stx2-positive supernatants from E. coli recovered from the endocervix were evaluated in Vero cells. Our results showed that 11.7% of the endocervical samples were positive for E. coli. Additionally, we found samples positive for stx2 and other virulence factors for STEC. The bacterial supernatant from an isolate identified as E. coli O113:NT, carrying the stx2 gene, exhibited cytotoxic activity in Vero, Swan 71 and Hela cells. Our results open a new perspective regarding the presence of STEC during pregnancy.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Resultado da Gravidez , Toxina Shiga II , Escherichia coli Shiga Toxigênica , Fatores de Virulência , Animais , Colo do Útero/microbiologia , Chlorocebus aethiops , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Células HeLa , Humanos , Gravidez , Resultado da Gravidez/genética , Gestantes , Ratos , Fatores de Risco , Toxina Shiga II/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Células Vero , Fatores de Virulência/genética
7.
Acta bioquím. clín. latinoam ; 56(2): 171-180, abr. 2022. graf
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1402954

RESUMO

Resumen Escherichia coli shigatoxigénica (STEC) está involucrada en el desarrollo del síndrome urémico hemolítico, entre otras enfermedades que son de gran importancia para la salud pública e inocuidad alimentaria a nivel mundial. La capacidad de STEC de formar biofilms en los alimentos y en diferentes superficies podría conducir a la contaminación cruzada por el desprendimiento de las células bacterianas. El objetivo del presente trabajo fue detectar la presencia de genes que codifican factores de adherencia mediante la técnica de PCR y determinar la capacidad de formación de biofilms por medio de cultivo en microplacas de poliestireno de 96 pocillos y la técnica de cristal violeta, en cepas de STEC aisladas de muestras clínicas humanas en la ciudad de Mar del Plata, Argentina. El perfil de genes de adherencia más frecuente fue efa1, iha, fimCD, ehaA, lpfA1-3, lpfA2-2, cah (43,9%). Todas las cepas de STEC formaron biofilms con valores de densidad óptica entre 0,209 y 3,251 y el 54,4% (31/57) de las mismas fueron clasificadas como fuertes formadoras de biofilms. La capacidad de formación de biofilms de STEC constituye un riesgo evidente en la transmisión de este patógeno al ser humano a tener en cuenta para su vigilancia y control.


Abstract Shigatoxigenic Escherichia coli (STEC) is involved in the development of hemolytic uremic syndrome, among other diseases that are relevant to public health and food safety worldwide. The ability of STEC to form biofilms in food and on different surfaces could lead to cross-contamination by shedding bacterial cells. The aim of this work was to detect the presence of genes encoding adherence factors by the PCR technique and to determine the biofilm formation ability by culture in 96-well polystyrene microplates and the crystal violet technique, in STEC strains isolated from human clinical samples in Mar del Plata city, Argentina. The most frequent adherence gene profile was efa1, iha, fimCD, ehaA, lpfA1-3, lpfA2-2, cah (43.9%). All STEC strains formed biofilms with optical density values between 0.209 and 3.251. Also, the 54.4% (31/57) of STEC strains were classified as strong biofilm formers. The ability of STEC to form biofilms constitutes an evident risk in the transmission of this pathogen to humans, which must be taken into account for its surveillance and control.


Resumo A Escherichia coli shigatoxigênica (STEC) está envolvida no desenvolvimento da síndrome hemolítica urêmica, entre outras doenças relevantes para a saúde pública e segurança alimentar em todo o mundo. A capacidade do STEC de formar biofilmes nos alimentos e em diferentes superfícies poderia levar à contaminação cruzada através do desprendimento de células bacterianas. O objetivo do presente trabalho foi detectar a presença de genes que codificam fatores de aderência através da técnica PCR e determinar a capacidade de formação de biofilme por cultura em microplacas de poliestireno de 96 poços e da técnica de cristal violeta, em cepas STEC isoladas de amostras clínicas humanas na cidade de Mar del Plata, Argentina. O perfil de genes de aderência mais frequente foi efa1, iha, fimCD, ehaA, lpfA1-3, lpfA2-2, cah (43,9%). Todas as cepas de STEC formaram biofilmes com valores de densidade ótica entre 0,209 e 3,251. Também, os 54,4% (31/57) das estirpes STEC foram classificados como fortes formadores de biofilmes. A habilidade de formação de biofilmes de STEC constitui um risco evidente na transmissão deste patógeno ao humano, que deve ser levado em consideração para sua vigilância e controle.


Assuntos
Humanos , Escherichia coli , Escherichia coli Shiga Toxigênica , Entorses e Distensões , Células , Doença , Biofilmes , Crescimento e Desenvolvimento , Poluição Ambiental , Inocuidade dos Alimentos , Alimentos , Genes , Métodos
8.
Food Sci Technol Int ; 28(7): 613-621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34779686

RESUMO

The objective of this study was to develop a quantitative microbial risk assessment (QMRA) model to evaluate potential risk mitigation strategies to reduce the probability of acquiring hemolytic uremic syndrome (HUS) associated with beef consumption in Argentina. Five scenarios were simulated to evaluate the effect of interventions on the probability of acquiring HUS from Shiga toxin-producing Escherichia coli (STEC)-contaminated ground beef and commercial hamburger consumption. These control strategies were chosen based on previous results of the sensitivity analysis of a baseline QMRA model. The application of improvement actions in abattoirs not applying Hazard Analysis and Critical Control Points (HACCP) for STEC would result 7.6 times lower in the probability that consumers acquired HUS from ground beef consumption, while the implementation of improvements in butcher shops would lead to a smaller reduction. In abattoirs applying HACCP for STEC, the risk of acquiring HUS from commercial hamburger consumption was significantly reduced. Treatment with 2% lactic acid, hot water and irradiation reduced 4.5, 3.5 and 93.1 times the risk of HUS, respectively. The most efficient interventions, in terms of case reduction, being those that are applied in the initial stages of the meat chain.


Assuntos
Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/prevenção & controle , Ácido Láctico , Probabilidade , Água
9.
Microbes Infect ; 24(1): 104883, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34474180

RESUMO

We aimed to compare the genetic diversity existing in VTEC O157:H7 strains isolated from cases of human disease from Argentina and Chile. For it, 76 strains were studied in relation to the distribution of genes encoding virulence factors and subtyped by lineage-specific polymorphisms (LSPA-6), and phylogroups assignment. Our results show the almost exclusive circulation of VTEC O157:H7 isolates belonging to lineage I/II, associated with hypervirulent strains, and to the phylogroup E and, on the other hand, genetic diversity present among Argentinean and Chilean strains analyzed, mainly in relation to putative virulence determinants and nle profiles.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Argentina , Chile , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Humanos , Fatores de Virulência/genética
10.
Rev Argent Microbiol ; 54(3): 215-219, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-34556377

RESUMO

The aim of this work was to evaluate the hygienic-sanitary conditions of butcher shops in Tandil, Buenos Aires Province, by estimating the risk based on good manufacturing and hygiene practices, through surveys of the establishments. The analysis was performed using a scale of 1-100, and classifying them as high risk (0-40), moderate risk (41-70) or low risk (71-100). The presence of Salmonella spp., Staphylococcus aureus and Shiga toxin-producing Escherichia coli (STEC) from both, ground beef and environmental samples such as countertop, cleaver, mincer and butcher's hands, taken at butcher shops was also evaluated. Sampling was performed only once and immediately refrigerated and transported to the laboratory for analysis. All butcher shops evaluated (100) were classified as "low risk" with good hygienic-sanitary conditions. However, 75% of the ground beef samples analyzed did not meet at least one of the microbiological criteria established in the Código Alimentario Argentino [Argentine Food Code], article 255. We propose to establish a strategy to identify deviations and implement a plan for continuous improvement in butcher shops of Tandil city.


Assuntos
Escherichia coli Shiga Toxigênica , Animais , Argentina , Bovinos , Microbiologia de Alimentos , Carne/microbiologia , Salmonella , Staphylococcus aureus
11.
Animals (Basel) ; 11(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34438845

RESUMO

Cattle are the main reservoir of Shiga toxin-producing Escherichia coli (STEC), one of the world's most important foodborne pathogens. The pathogen causes severe human diseases and outbreaks. This study aimed to identify and characterize non-O157 STEC isolated from cattle feces from central and southern Chile. We analyzed 446 cattle fecal samples and isolated non-O157 STEC from 12.6% (56/446); a total of 93 different isolates were recovered. Most isolates displayed ß-glucuronidase activity (96.8%; 90/93) and fermented sorbitol (86.0%; 80/93), whereas only 39.8% (37/93) were resistant to tellurite. A subgroup of 30 representative non-O157 STEC isolates was selected for whole-genome sequencing and bioinformatics analysis. In silico analysis showed that they grouped into 16 different sequence types and 17 serotypes; the serotypes most frequently identified were O116:H21 and O168:H8 (13% each). A single isolate of serotype O26:H11 was recovered. One isolate was resistant to tetracycline and carried resistance genes tet(A) and tet(R); no other isolate displayed antimicrobial resistance or carried antimicrobial resistance genes. The intimin gene (eae) was identified in 13.3% (4/30) of the genomes and 90% (27/30) carried the stx2 gene. A phylogenetic reconstruction demonstrated that the isolates clustered based on serotypes, independent of geographical origin. These results indicate that cattle in Chile carry a wide diversity of STEC potentially pathogenic for humans based on the presence of critical virulence genes.

12.
Curr Microbiol ; 77(9): 2111-2117, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504321

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are zoonotic food pathogens associated with foodborne diarrheal illness, hemorrhagic colitis, and complications such as hemolytic uremic syndrome (HUS). The ability to adhere to epithelial cells is an important virulence trait, and pathogenicity islands (PAIs) play an important role on it. Some STEC carrying a PAI named locus of enterocyte effacement (LEE-positive) have been frequently associated to HUS; however, STEC that do not carry LEE (LEE-negative) have also been associated with this outcome. The burden of disease caused by LEE-negative STEC has increased recently in several countries like Argentina, Chile, and Paraguay. A new PAI -the Locus of Adhesion and Autoagregation (LAA)-has been associated to severe disease in humans. In this study, we aimed to analyze the distribution of LAA and its possible predictor, the gene hes, in LEE-negative STEC strains isolated from Chile and Paraguay from different sources. The presence of the different LAA modules and hes were detected by PCR. LAA was found in 41.6% and 41.0% of strains isolated from Chile and Paraguay, respectively. Strains were isolated from diverse origins and belonged to several serogroups including O91, O103, and O113. The hes gene was detected in 50% of the isolates from Paraguay and Chile. Therefore, the detection of LAA and hes in STEC could complement current genetic evaluation schemes, allowing to classify LEE negative STEC strains as LAA-positive or LAA-negative STEC strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Argentina , Chile , Proteínas de Escherichia coli/genética , Humanos , América Latina , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética
13.
Heliyon ; 5(12): e03015, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31879713

RESUMO

LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains are important cause of infection in humans and they should be included in the public health surveillance systems. Some isolates have been associated with haemolytic uremic syndrome (HUS) but the mechanisms of pathogenicity are is a field continuos broadening of knowledge. The IrgA homologue adhesin (Iha), encoded by iha, is an adherence-conferring protein and also a siderophore receptor distributed among LEE-negative STEC strains. This study reports the presence of different subtypes of iha in LEE-negative STEC strains. We used genomic analyses to design PCR assays for detecting each of the different iha subtypes and also, all the subtypes simultaneously. LEE-negative STEC strains were designed and different localizations of this gene in STEC subgroups were examinated. Genomic analysis detected iha in a high percentage of LEE-negative STEC strains. These strains generally carried iha sequences similar to those harbored by the Locus of Adhesion and Autoaggregation (LAA) or by the plasmid pO113. Besides, almost half of the strains carried both subtypes. Similar results were observed by PCR, detecting iha LAA in 87% of the strains (117/135) and iha pO113 in 32% of strains (43/135). Thus, we designed PCR assays that allow rapid detection of iha subtypes harbored by LEE-negative strains. These results highlight the need to investigate the individual and orchestrated role of virulence genes that determine the STEC capacity of causing serious disease, which would allow for identification of target candidates to develop therapies against HUS.

14.
Emerg Microbes Infect ; 8(1): 486-502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30924410

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe gastroenteritis, which may lead to hemolytic uremic syndrome. The Locus of Enterocyte Effacement (LEE), a Pathogenicity Island (PAI), is a major determinant of intestinal epithelium attachment of a group of STEC strains; however, the virulence repertoire of STEC strains lacking LEE, has not been fully characterized. The incidence of LEE-negative STEC strains has increased in several countries, highlighting the relevance of their study. In order to gain insights into the basis for the emergence of LEE-negative STEC strains, we performed a large-scale genomic analysis of 367 strains isolated worldwide from humans, animals, food and the environment. We identified uncharacterized genomic islands, including two PAIs and one Integrative Conjugative Element. Additionally, the Locus of Adhesion and Autoaggregation (LAA) was the most prevalent PAI among LEE-negative strains and we found that it contributes to colonization of the mice intestine. Our comprehensive and rigorous comparative genomic and phylogenetic analyses suggest that the accumulative acquisition of PAIs has played an important, but currently unappreciated role, in the evolution of virulence in these strains. This study provides new knowledge on the pathogenicity of LEE-negative STEC strains and identifies molecular markers for their epidemiological surveillance.


Assuntos
Evolução Molecular , Ilhas Genômicas , Fosfoproteínas/deficiência , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/patogenicidade , Fatores de Virulência/genética , Animais , Modelos Animais de Doenças , Microbiologia Ambiental , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli , Microbiologia de Alimentos , Genótipo , Incidência , Sequências Repetitivas Dispersas , Intestinos/microbiologia , Camundongos , Filogenia , Escherichia coli Shiga Toxigênica/genética , Virulência
15.
Microb Pathog ; 125: 463-467, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30300666

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O91 has ranked in the top five of the non-O157 serogroups most frequently associated with human cases. In order to gain insight into the genetic diversity of O91 Latin American STEC strains, we analyzed their virulence properties and carried out a subtyping assay. A panel of 21 virulence genetic markers associated with human and animal infections was evaluated and the relatedness among strains was determined by a multiple-locus variable-number tandem repeats analysis (MLVA) comprising 9 VNTR loci. Twenty-two STEC O91 isolated from cattle and meat food and belonging to 5 serotypes (O91:H21, O91:H8, O91:H14, O91:H28, O91:H40) were studied. Eight virulence profiles were obtained for the O91 STEC strains: 4 for O91:H21 plus one for O91:H8, O91:H14, O91:H28 and O91:H40. All strains contained ehxA and lpfA0113 genes and only both stx1-positive strains lacked saa, which encodes the STEC autoagglutinating adhesin. Other genes involved in adhesion were detected: ehaA (91%), elfA and espP (86%), ecpA (82%) and, hcpA (77%). The gene encoding the cytolethal distending toxin type-V (CDT-V) was found only in O91:H8 and O91:H21, being present in the majority (89%) of strains of this last serotype. MLVA typing divided the total number of strains into 12 genotypes, and 9 of them were unique to a single strain. No association was observed between the virulence profiles and the source of the strains. Although they lack the eae gene, most of the strains have the genetic potential to adhere to host cells through other structures and possess cdt-V, which has been found in STEC strains involved in serious diseases. The MLVA showed clonal relatedness among strains isolated from cattle belonged to a same dairy farm and suggested that the same clone remains circulating throughout the year and, on the other hand, the need to increase the number of VNTR loci which could allow a higher discrimination among O91:H21 isolates.


Assuntos
Variação Genética , Produtos Avícolas/microbiologia , Carne Vermelha/microbiologia , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Fatores de Virulência/genética , Animais , Bovinos , Genótipo , Repetições Minissatélites , Tipagem Molecular , Reação em Cadeia da Polimerase , Aves Domésticas , Sorogrupo , Escherichia coli Shiga Toxigênica/genética
16.
Microb Pathog ; 123: 259-263, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30009972

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens that can cause severe disease. The ability to adhere to epithelial cells is an important virulence trait and pathogenicity islands (PAIs) play an important role. Recently, researchers identified a member of the Heat-resistant agglutinin family and characterized this antigen named Hemagglutinin from Shiga toxin-producing E. coli (Hes). More importantly, they showed that hes and other genes such as iha, pagC and agn43 were integrated in each of the four modules present in the new PAI named Locus of Adhesion and Autoaggregation (LAA) whose presence is associated with severe disease linked to with LEE-negatives STEC. The distribution of LAA among STEC strains isolates from different origins between 2000 and 2015 from cattle, the farm environment, and food and harboring diverse virulence was investigated. The STEC strains were characterized by PCR to detect three modules of LAA and agn43 (as marker of module IV), and phylogenetic groups were determined. LAA was found in 46% of LEE-negative STEC corresponding to serogroups O91, O174, O113, O171, O178, O130 and others. The presence of this PAI is associated with strains harboring stx2 (56%) and belonging to phylogroup B1 (91%). LAA is a novel pathogenicity island associated with strains isolated from Hemolytic Uremic Syndrome cases. Therefore, the results of this study contribute to a better understanding regarding the pathogenicity of this emergent subset of STEC strains harboring LAA as a predictor of virulence of LEE-negative STEC strains.


Assuntos
Proteínas de Escherichia coli/genética , Ilhas Genômicas/genética , Fosfoproteínas/genética , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Adesinas de Escherichia coli/genética , Animais , Animais Domésticos , Argentina , Proteínas de Bactérias/genética , Bovinos , Análise por Conglomerados , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/veterinária , Marcadores Genéticos , Genoma Bacteriano , Hemaglutininas , Filogenia , Toxina Shiga I/genética , Toxina Shiga II/genética , Virulência
17.
Front Microbiol ; 9: 1370, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002649

RESUMO

The aim of the present study was to determine the prevalence of Salmonella in the pork production chain and to characterize Salmonella isolates. From 764 samples, 35 (4.6%) were positive for Salmonella spp., as determined by biochemical tests and the presence of the invA gene. From these, 2.6, 2.0, 8.8, and 8.0% corresponded to samples collected from farms, slaughterhouses, boning rooms and retail markets, respectively. Salmonella strains were classified into five serotypes and distributed as follows: S. Typhimurium in the pork production chain, S. Kentucky in farms and slaughterhouses, S. Brandenburg in slaughterhouses, S. Livingstone in farms and S. Agona in boning rooms and retail markets. Interestingly, the antimicrobial susceptibility testing indicated that all 35 Salmonella spp.-positive isolates were resistant to at least one antimicrobial agent, and 30 were multidrug-resistant (MDR) and resistant to different classes of antibiotics. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) analysis showed clonal relatedness among strains isolated from farms, boning rooms and retail markets. The presence of antibiotic-resistant Salmonella in food poses a potential health hazard to consumers.

18.
Microbes Environ ; 32(3): 275-282, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28904264

RESUMO

Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and blaCTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.


Assuntos
Bovinos/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Adesinas Bacterianas/genética , Animais , Animais Recém-Nascidos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Enterotoxinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Uruguai
19.
PLoS One ; 12(8): e0183248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28829794

RESUMO

Several foods contaminated with Shiga toxin-producing Escherichia coli (STEC) are associated with human diseases. Some countries have established microbiological criteria for non-O157 STEC, thus, the absence of serogroups O26, O45, O103, O104, O111, O121, and O145 in sprouts from the European Union or ground beef and beef trimmings from the United States is mandatory. While in Argentina screening for O26, O103, O111, O145 and O121 in ground beef, ready-to-eat food, sausages and vegetables is mandatory, other countries have zero-tolerance for all STEC in chilled beef. The aim of this study was to provide data on the prevalence of non-O157 STEC isolated from beef processed in eight Argentinean cattle slaughterhouses producing beef for export and local markets, and to know the non-O157 STEC profiles through strain characterization and genotypic analysis. Samples (n = 15,965) from 3,205 beef carcasses, 9,570 cuts and 3,190 trimmings collected between March and September 2014 were processed in pools of five samples each. Pools of samples (n = 3,193) from 641 carcasses, 1,914 cuts and 638 trimming were analyzed for non-O157 STEC isolation according to ISO/CEN 13136:2012. Of these, 37 pools of carcasses (5.8%), 111 pools of cuts (5.8%) and 45 pools of trimmings (7.0%) were positive for non-O157 STEC. STEC strains (n = 200) were isolated from 193 pools of samples. The most prevalent serotypes were O174:H21, O185:H7, O8:H19, O178:H19 and O130:H11, and the most prevalent genotypes were stx2c(vh-b) and stx2a/saa/ehxA. O103:H21 strain was eae-positive and one O178:H19 strain was aggR/aaiC-positive. The prevalence of non-O157 STEC in beef carcasses reported here was low. None of the non-O157 STEC strains isolated corresponded to the non-O157 STEC serotypes and virulence profiles isolated from human cases in Argentina in the same study period. The application of microbiological criteria for each foodstuff should be determined by risk analysis in order to have a stringent monitoring system. Likewise, zero-tolerance intervention measures should be applied in beef, together with GMP and HACCP. Further, collaborative efforts for risk assessment, management and communication are extremely important to improve the safety of foodstuffs.


Assuntos
Matadouros , Carne/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Argentina , Bovinos , Eletroforese em Gel de Campo Pulsado , Genes Bacterianos , Escherichia coli Shiga Toxigênica/química , Escherichia coli Shiga Toxigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...